Aquatic ecologist Bill Miller, left, and chair of the Pitkin County Healthy Streams Board Andre Wille stand on the banks of Castle Creek as Miller prepares to take macro-invertebrate samples. The county hired Miller to collect baseline data to ensure increased snowmaking on Aspen Mountain won’t harm the health of the stream. Photo by Heather Sackett/Aspen Journalism
ASPEN — On a recent snowy morning, aquatic ecologist Bill Miller dipped what’s known as a Hess sampler into the frigid waters of Castle Creek near Aspen.
Miller stirred up the streambed with his hands, funneling the rocks, sediment and leaves — along with macro-invertebrates such as insects and worms — into the collection container.
After putting the organic material into smaller jars and giving each one a squirt of alcohol as a preservative, he ferried them to a lab in Fort Collins. Scientists there will count the number and types of bugs in each sample.
“By the different species that are there, you can get a good indication of stream and water quality, and overall ecological function,” Miller said.
Miller’s work is part of a program that will monitor the health of Castle and Maroon creeks, ensuring that Aspen Skiing Co.’s increased water use for snowmaking on Aspen Mountain won’t harm the aquatic environment of the creeks. The stream-monitoring program was set out in September as a condition of Pitkin County’s approval of Skico’s Aspen Mountain Ski Area Master Plan.
“I think the idea of this is we don’t want the snowmaking to cause significant harm to the creeks,” said Andre Wille, chairman of Pitkin County Healthy Rivers board.
Aquatic ecologist Bill Miller shows the bugs and worms from Castle Creek that he collected with a Hess sampler. Starting in the 2020-21 season, Aspen Mountain will use an additional 57 acre-feet of water from city supplies, which come from Castle and Maroon creeks, for snowmaking per season. Photo by Heather Sackett/Aspen Journalism
Aspen Mountain expansion
As part of its planned expansion, Aspen Mountain will use an additional 57 acre-feet of water per season, bringing the total average snowmaking water use to roughly 257 acre-feet. For context, Wildcat Reservoir, which is visible from the Snowmass Ski Area, holds about 1,100 acre-feet of water.
Skico is expanding its snowmaking for the 2020-21 season on 53 acres near the summit of Aspen Mountain, which will make it easier to have reliable and consistent snow coverage to ensure a Thanksgiving opening. Skico draws its water for snowmaking on Aspen Mountain from the city’s treated municipal supply, which is from Castle and Maroon creeks.
When Skico makes snow in November and December, the upside is there are fewer municipal water users pulling from local streams — outdoor irrigation season is over and holiday crowds have yet to arrive —but snowmaking uses water when natural streamflows are at some of their lowest points of the year.
“We were definitely concerned with the possibility of too much water being taken out in those early months of the winter,” Wille said.
Miller collected samples from above and below the city’s diversion dams on both lower Castle and Maroon creeks. His samples will act as a baseline against which the condition of the streams in future — and perhaps drier — years will be measured.
According to the resolution approving Aspen Mountain’s master plan, if the county’s aquatic ecologist determines, in future years, that the additional water usage is having a negative effect on stream health, the county could limit Skico’s water use to historical levels — about 200 acre-feet a year.
Aquatic ecologist Bill Miller, left, shows chair of Pitkin County Healthy Streams Board Andre Wille the three samples of macro-invertebrates he collected from Castle Creek. Some say the instream flow water rights held by the Colorado Water Conservation Board don’t necessarily go far enough to protect stream health. Photo by Heather Sackett/Aspen Journalism
Instream flows
There is another safeguard to keep water in the river, but some say it may not go far enough to ensure stream health.
The Colorado Water Conservation Board, a state agency, holds instream-flow water rights on both Castle and Maroon creeks. And the state has determined that it requires at least 12 cubic feet per second of flowing water to protect the environment to “a reasonable degree” on lower Castle Creek and 14 cfs on lower Maroon Creek.
“We don’t feel it’s advisable to look at what the CWCB may have decreed in the past for a minimum instream flow,” said John Ely, Pitkin County attorney. “That’s not necessarily indicative from a scientific point of view of what is actually needed to maintain a healthy stream.”
That’s why the county hired Miller — who also is the longtime consulting biologist for the city of Aspen — to do its own assessment of stream health.
Ely said stream samples may not need to be taken every year — just in dry years when snowmaking could exacerbate already low flows. He estimated the annual cost of the monitoring program at about $5,000 to $10,000.
Jeff Hanle, Skico’s vice president of communications, said the company is taking steps to increase the efficiency of its on-mountain storage for snowmaking, such as adding two new ponds on Gent’s Ridge, so it won’t need to pull as much water from the city’s supply during the early season.
Although Skico and Pitkin County still need to work out the details of the stream-monitoring program, Hanle said the company is on board with preserving the ecological health of Castle and Maroon creeks.
“We would not make snow if it’s harming the stream, even if it could shorten a season,” he said. “We aren’t going to damage our home.”
Aspen Journalism collaborates with The Aspen Times and other Swift Communications newspapers on coverage of rivers and water. This story ran in the Nov. 11 edition of The Aspen Times.
Colorado voters narrowly approved a new sports-betting tax whose proceeds will help fund water projects across the state, including conservation programs, stream restoration, and new reservoirs.
The vote is a major victory for the bi-partisan coalition that backed the measure and represents the first voter-approved effort to fund the four-year-old Colorado Water Plan.
The nail-biter margins, 1.5 percent at press time, provide a cautionary tale on how much support exists for water funding and how much more will be needed in the future, backers said.
“I was surprised. It was super close,” said Alec Garnett, D-Denver, the lead sponsor of the bill that referred Proposition DD, as it was known, to voters. “But it’s a reminder to everyone that Colorado is a fiscally conservative state.”
Proposition DD legalizes sports betting and imposes a 10 percent tax on casino revenue derived from this new form of gambling. A statewide map of the vote count showed voters on the Front Range and in ski counties, such as Eagle, Summit and Ouray, had the most enthusiasm for the measure, while rural counties on the West Slope and Eastern Plains rejected it.
Garnett said he was proud of the consensus on water demonstrated by the win, and the power of the bi-partisan coalition of politicians, environmentalists, water utilities, and agriculture groups that came together to back the campaign.
“Any legislator will say, ‘You’re electing me to go in to help solve problems and bring people together,’ and I’m proud of how we did that here,” he said.
Election workers change out ballot boxes in Denver on Nov. 4, 2019. Credit: Jerd Smith
The vote sends an important signal to lawmakers and others, according to political pollster Floyd Ciruli.
“There is no better conversation to have than a ballot issue. You get everyone’s attention. This vote shows people do believe water is important and that this is a good way to [fund] it,” Ciruli said.
Early on, Prop DD was barely showing up on voters’ radar, with early polls indicating little support. But a digital and TV ad campaign launched last month helped turn the tide, Ciruli said.
Sen. Jerry Sonnenberg, R-Sterling, opposed the measure and said he remains concerned that there isn’t enough transparency in how the money will be managed and that it is improper to use a so-called “sin tax” to pay for something as fundamental as water resources.
“Water is such an important issue we should pay for it out of the general fund or out of severance taxes,” Sonnenberg said, adding that he will continue to fight in the Legislature to ensure the money is used for the water plan.
Estimated to total between $12 million to $29 million annually, the sports-betting tax money will flow into a new fund overseen by the Colorado Water Conservation Board (CWCB). It could be used for a variety of purposes, including water-saving programs for cities and farms, habitat restoration programs, storage projects, land use planning, and environmental water supplies for water-short streams.
Since 2015, the CWCB has financed the water plan using income derived from severance taxes, the state’s general fund, and other sources. Those amounts have varied widely, with the state setting aside $30 million this year, up from $5 million in 2015, according to the CWCB.
Backers characterize DD as a valuable down payment on the water plan. Assuming the tax is able to eventually generate $29 million a year, that’s still less than one-third of the $100 million a year the state has previously estimated it will take to protect scarce water resources and to prevent future water shortages.
This year, another group emerged whose intent is to raise additional money for the water plan. For The Love of Colorado, backed by the Walton Family Foundation (also a funder of Fresh Water News) and the Gates Family Foundation, is preparing to run a large public awareness campaign about the critical nature of the state’s water challenges and the need for funding.
The group’s executive director, Tim Wohlgenant, said the close vote demonstrates how much more work is needed.
“It’s great that voters did this. But I need to emphasize it’s literally only a drop in the bucket. And even though it passed, it barely passed. We have more work to do.”
David Nickum, executive director of Colorado Trout Unlimited, said he hopes Prop DD will stimulate environmental and water conservation programs, much like Great Outdoors Colorado has. GOCO is the 1992 ballot initiative that has helped preserve hundreds of thousands of acres of historical ranches and open space across Colorado, protecting them from development. It is funded with state lottery proceeds.
“We’re pleased that Colorado voters are making a decision to invest in our resources, using the water plan as a road map for that,” Nickum said.
“Hopefully it will lead to a proliferation of projects, much like GOCO did,” he said.
Jerd Smith is editor of Fresh Water News. She can be reached at 720-398-6474, via email at jerd@wateredco.org or @jerd_smith.
This story originally appeared on Fresh Water News, an independent, non-partisan news initiative of Water Education Colorado. WEco is funded by multiple donors. Its editorial policy and donor list can be viewed at wateredco.org.
A river project, partially funded by the CWCB on the Arkansas River at Granite. The project was removing a river-wide diversion structure and replacing it with a new diversion structure that will allow unimpeded boating through Granite. Photo by Brent Gardner-Smith/Aspen Journalism
Colorado voters have narrowly passed a measure that will legalize sports betting and use the taxes raised to fund projects outlined in the Colorado Water Plan.
As votes trickled in Tuesday night, the measure remained too close to call; at some points, the margin was just a few hundred votes. But by Wednesday evening the “yes” votes had decisively pulled ahead.
The unofficial results from the Colorado Secretary of State website show that 50.81 percent of voters supported Proposition DD and 49.19 percent were against it — a difference of more than 23,000 votes.
Pitkin, Eagle and Summit counties passed the measure, with 61 percent, 59 percent and 58 percent of voters, respectively, supporting it. Fifty-two percent of voters in Garfield County voted against Proposition DD.
Beginning May 1, 2020, the state is authorized to collect a 10 percent tax up to $29 million (but probably closer to $15 million) a year from casino’s sports-betting proceeds. The money will go toward funding projects that align with the goals outlined in the water plan, as well as toward meeting interstate obligations such as the Colorado River Compact.
The funds would be administered by the Colorado Water Conservation Board, a statewide agency charged with managing Colorado’s water supply.
District 5 State Sen. Kerry Donovan, who was a sponsor of the legislation behind Proposition DD, said going into Election Day she wasn’t sure whether it would pass. With Colorado’s growing population and the looming threat of climate change, the Western Slope will see an increasingly large burden when it comes to water supply, she said.
“As a rancher and a Western Slope native, I am really excited the state has decided to invest in the future of water in Colorado,” she said.
An aerial view of Wolford Reservoir, formed by Ritschard Dam. The Colorado Water Plan outlines many different types of projects, including reservoirs and dams, that need funding. Source: Colorado River District
Water Plan funding
Funding the water plan could mean a number of things. Outlined in a 567-page policy document, the water plan does not prescribe or endorse specific projects, but, instead, sets Colorado’s water values, goals and measurable objectives. According to the water plan, there is an estimated funding gap of $100 million per year over 30 years, but CWCB officials have said that number is an estimate and not precise.
Some of the projects outlined in the water plan stand in opposition to one another — for example, stream-restoration projects with an emphasis on environmental health and building or expanding dams and reservoirs that would divert and impound more Colorado River water.
CWCB director Becky Mitchell highlighted that the money could indeed go toward many different types of projects.
“I think the most exciting thing for us is that we will have a more permanent pool of funding and it will support all types of projects,” Mitchell said. “So, whether it’s a watershed health or agricultural project or storage project or recreational project, the benefit of a more permanent source of funding is to have secure funding for all types of projects.”
In addition to being distributed in the form of water-plan grants, the revenue could also be spent to ensure compliance with interstate compacts and to pay water users for temporary and voluntary reductions in consumptive use. That could mean a demand-management program — the feasibility of which the state is currently studying — in which agricultural water users would be paid to leave more water in the river.
Pitkin County is using this irrigation system to grow potatoes for vodka on county open space land. Funds raised from a sports betting tax could help fund a demand management program, which could pay irrigators on a voluntary, temporary and compensated basis to leave more water in the river. Photo by Brent Gardner-Smith/Aspen Journalism
Broad support
The measure had received broad support from environmental organizations, agriculture interests, water-conservation districts and even Aspen Skiing Company.
Glenwood Springs-based Colorado River Water Conservation District also supported Proposition DD. While the estimated $15 million a year is a good start, river district community affairs director Jim Pokrandt stressed it’s not enough to implement all the projects outlined in the water plan.
“What this does is creates a funding stream,” he said. “And it’s really only a down payment. What we don’t want to see is the other funding streams diminish because everybody will say ‘Oh, you got (Proposition DD).’”
Although there wasn’t much organized opposition to Proposition DD, the measure asked voters to consider three complex topics in one question: a new tax, legalizing sports betting and funding the water plan.
Political Action Committee Yes on Proposition DD spent more than $2.3 million, which came mostly from casino and gaming interests, on its campaign. The only registered group in opposition was small-scale issue committee Coloradans for Climate Justice, which argued that fossil-fuel companies should pay for the damage to water-supply systems caused by climate change.
Editor’s note: Aspen Journalism collaborates with The Aspen Times and other Swift Communications newspapers on coverage of rivers and water. This story appeared in the Times Nov. 6 edition.
It’s been a year since two devastating wildfires on opposite ends of California underscored the harsh new realities facing water districts and cities serving communities in or adjacent to the state’s fire-prone wildlands. Fire doesn’t just level homes, it can contaminate water, scorch watersheds, damage delivery systems and upend an agency’s finances.
The lessons gained from those 2018 wildfires that swept through Paradise, in Northern California, and along the Los Angeles-Ventura County border in Southern California are still being absorbed by water managers around California as they recognize that the old emergency preparedness plans of yesterday may not be adequate for the new wildfire reality of today.
“This issue is the most dynamic and the most challenging one facing water agencies today,” Dave Pedersen, general manager of the Las Virgenes Municipal Water District in Southern California, told the audience at the Water Education Foundation’s Oct. 30 Water Summit in Sacramento.
The Camp Fire became the deadliest and most destructive fire in California history, starting early on Nov. 8, 2018 and tearing through the northern Sierra foothills town of Paradise east of Chico. All told, 85 people died and more than 18,000 structures were destroyed, including about 90 percent of the homes and businesses served by the Paradise Irrigation District, where water meters and service pipelines melted. With so much of its customer base lost, the district is now having to reimagine its business in order to survive.
That same November day, a small blaze that swiftly grew into the massive Woolsey Fire quickly swept through coastal mountains in northwestern Los Angeles County, including much of the service area of Las Virgenes Municipal Water District. Service mains ruptured as district staff pushed water through them to supply firefighters battling the fire. Electricity needed to power district facilities was cut.
Map by The Water Desk and EcoWest Visualizations
“We lost power to everything,” Pedersen said in an interview. “That was a big eye-opener. To lose power to all of our facilities was pretty unprecedented and something we had not previously prepared for.”
Water managers around California are getting many eye-openers these days as wildfires become larger, more frequent and more destructive. A study published in July of this year by a team of scientists led by Columbia University’s Lamont-Doherty Earth Observatory found that from 1972-2018, California experienced a fivefold increase in annual wildfire-burned area, an increase it said was likely from increased aridity caused by a warming climate. According to Cal Fire, the state’s primary wildland fire agency, 2018 was the worst fire season on record. The devastation returned this fall when wind-stoked fires ignited in October in both Southern and Northern California, including the Kincade Fire that destroyed 374 structures in Sonoma County.
Melted meters and spilled water
The destructive power of wildfires is magnified by the wildland-urban interface, the zone where natural areas and development meet.
Furious winds can scatter embers into dry brush and stoke flames that can sprint through neighborhoods in mere minutes. Fires can cut power needed to run the pumps that keep water flowing to hydrants and fire hoses. It melts meters and pipes, bleeding water systems of pressure and leaching toxic chemicals into the supply.
Fire can move with such speed that water managers must move swiftly to keep their systems operating and their staff safe. Severed water service connections can spill about 30 gallons of water each minute. The cumulative effect is problematic.
“If you have one or two of those, it’s not such a big deal, but with 150 of those you very quickly drain your system,” said Pedersen.
Even after the last smoldering embers have been extinguished, fire-scarred hillsides can become unmoored in a downpour, sending mud and debris smashing through water mains.
After the Thomas Fire swept through Ventura and Santa Barbara counties in December 2017, a January storm that dumped a half-inch of rain in five minutes unleashed a torrent of mud and rocks that smothered homes and destroyed water supply lines.
“We had breaks in eight locations and distribution breaks at basically every bridge,” said Adam Kanold, engineering manager with the Montecito Water District in Santa Barbara County. Ultimately, 30 fire hydrants had to be replaced.
“This issue is the most dynamic and the most challenging one facing water agencies today.” ~Dave Pedersen, general manager, Las Virgenes Municipal Water District
Wildfires also can pour ash and debris into water supply reservoirs even after they’ve been extinguished. Ash settles on lakes and reservoirs used for drinking water and debris washes in during the rainy season. Federal and local agencies this year in Placer County launched a $14 million effort to thin vegetation to prevent a repeat of what happened in 2014, when ash and debris from the King Fire hampered the water quality of the French Meadows and Hell Hole reservoirs in the Sierra Nevada northeast of Auburn.
The advent of public safety power shutoffs has added a new wrinkle to the risk factor. Implemented by utilities in Northern and Southern California to prevent high winds from sparking fires from downed utility lines and poles, power shutoffs can impact water agencies. In October, East Bay Municipal Utility District announced that more than 140 of its facilities — including water treatment plants, pumping plants and local water storage tanks – would be affected by a power shutoff. The district asked customers in affected pressure zones to minimize indoor water use and halt outdoor use altogether.
Public safety power shutoffs have come under extreme criticism, but power utilities say they are necessary to prevent catastrophic wildfire.
“We recognize that this was a hardship for many of our customers across Northern and Central California,” PG&E President Bill Johnson wrote in an Oct. 18 letter to Gov. Gavin Newsom, “but we made this decision for one reason only: to keep our customers and communities safe.”
For water agencies, the new paradigm of destructive wildfires has changed the emergency response playbook. In Santa Rosa, where the 2017 Tubbs Fire swooped down across 12 miles of terrain in three hours to level whole neighborhoods, the city’s Director of Water Resources Jennifer Burke said none of their emergency planning had anticipated a fire so devastating.
“We had a lot of plans in place, but our major preparation was always for earthquake,” Burke said.
The Tubbs Fire broke out the evening of Oct. 9, 2017. By the time it was out, the fire had burned more than 36,000 acres and claimed 22 lives. About 1,500 of the 2,821 homes lost in the Tubbs Fire in and near Santa Rosa were in the wildland-urban zone, the city said.
Burke said among the challenges the city faced during the fire was keeping water in its system. “When you have 3,100 structures destroyed and a significant number of open water lines and 12-inch fire lines, that led our system to bleed out. We continued to pump water into the system, but it was coming out just as quickly.”
With the surge in demand and as plastic water pipes on private properties melted, contaminants were sucked into the water system. Within a month, the city started receiving taste and odor complaints. Santa Rosa began testing its water for contaminants, but Burke said it took city officials a year to understand the extent of the problem.
She said the city learned that following a major fire, it’s important to immediately flush the water lines to clear out any contaminants. Burke added that any agency dealing with fire in urban areas should quickly take “first-draw samples” of water to test whether any volatile organic contaminants have leached into the system.
Santa Rosa lost about 5 percent of its base of 175,000 water customers due to property loss in the fire, Burke said. The city has backfilled that revenue through undesignated reserves while it waits for the neighborhoods to rebuild.
Paradise lost
The Camp Fire attacked Paradise with a fury, moving so fast it essentially bypassed trees, focusing its energy on cars and buildings.
“The fire ate the town within six hours,” said Kevin Phillips, general manager of the Paradise Irrigation District. With water spraying from connections at burned structures, the district had to shut off its system to keep from bleeding itself dry.
“We had a lot of plans in place, but our major preparation was always for earthquake.” ~Jennifer Burke, Santa Rosa Director of Water Resources
The district’s above-ground infrastructure survived the fire relatively unscathed. Its office remained standing and its storage tanks and treatment plant emerged intact. Its reservoir east of town was unaffected. However, the district lost 90 percent of its 10,500 connections to homes and businesses to the fire. Thirty of the district’s 36 employees lost their homes. Customers whose structures survived were unable to use their water because of contamination from benzene, a known carcinogen. Contamination from the fire’s residue left the district with a massive clean-and-clear project.
Getting back up and running meant taking a conservative approach based on protecting the health and safety of the district’s customers. Once water was returned to the system, the district let it sit there for 72 hours and then flushed the system to try to clear contaminants. Then it began testing water throughout the distribution system. By early October, 453 of the standing structures tested by Paradise Irrigation District received letters of potability, said Phillips, noting that about 50 structures are evaluated for contamination each week. Meanwhile, new homes are rising from the ashes. Rather than testing their water, the district is providing those homes with new water lines known as laterals.
“What we found is that more than 50 percent of the service laterals that served burned structures have some sort of contamination from the fire,” Phillips said. “Not only is it more efficient to not test them, it gives the customer confidence that when they come back and build a brand-new home, they are going to have as good or better water than they had before the fire.”
The effort is not cheap, and Paradise Irrigation District is “leaning on everybody,” including FEMA, which is helping to cover the $40 million to $90 million cost of replacing the town’s service laterals, Phillips said.
Having lost most of its customer base, Paradise Irrigation District is now trying to write a new business plan to sustain itself over the next several years as the town rebuilds. Looking to make use of its existing and now underutilized water supply, the district is studying a potential regional intertie that could send water to Chico, providing a revenue stream to sustain the district while the community gradually gets back on its feet. Butte County supervisors on Nov. 5 balked at picking up part of the feasibility study’s costs, but Phillips said the district isn’t giving up on the idea.
Avoiding empty fire hydrants
Beginning in the Santa Susana Mountains above Simi Valley on the afternoon of Nov. 8, 2018, the Woolsey Fire started slow but then moved fast, jumping the 101 Freeway early the next morning. The Las Virgenes water district activated its emergency operations center at its headquarters very quickly, even before the fire entered its service area, Pedersen said.
After that, it was “a waiting game,” he said. Water tanks were filled, pumps turned on and the call went out for emergency generators as backup in case the power went out – which it did. Pedersen and others stayed on-site and sheltered in place as fire swept around them rather than open a remote emergency operations center, a decision that in retrospect he would have made differently.
“Our office did not burn down, but it was a little scary to have fire all around and to have smoke coming into the building,” Pedersen said.
Las Virgenes deployed portable generators to power pumps needed to make sure water was available to knock down flames. “My goal in the fire was to make sure there was not a firefighter standing next to an empty fire hydrant at all costs,” Pedersen said. “I wanted to make sure they had what they needed.”
Las Virgenes learned that pushing large amounts of water though its system to fight fire inevitably caused breaks at weak points in the system. The answer, Pedersen said, was to isolate the break quickly and move water around it. While breakages were expected, it was surprising how soon they occurred.
Pedersen’s plight was complicated by another fire to the west that required adequate water pressure for the neighboring Calleguas Municipal Water District in southern Ventura County. Eventually, the Metropolitan Water District of Southern California, whose regional line supplies Las Virgenes and Calleguas, took extraordinary moves to get Las Virgenes the water it needed.
Situated as it is in the heart of a fire-prone area, the district has long understood that wildfire is inevitable. What was unprecedented with the Woolsey Fire, Pedersen said, was its speed and intensity.
“We have fires here,” Pedersen told Water Summit attendees, “but we never saw anything like Woolsey.”
While the fire claimed 350 homes within the district — less than 2 percent of Las Virgenes’ roughly 20,000 customers — it caused $6 million to $7 million in damage to district facilities. Pedersen said the district has been able to absorb the impact through its reserves.
‘Activate early, apologize later’
The experience of Paradise, Las Virgenes and Santa Rosa offers other water agencies some vivid lessons on how to prepare for and respond to a wildfire of unimaginable severity.
“To try to plan for something like this is really, really difficult,” Phillips told the audience at the Foundation’s Water Summit. He said the Paradise district did a tabletop wildfire planning exercise one month before the Camp Fire broke out. But they never imagined a wildfire that would be as devastating or one that would come at the town from two different directions.
After spending the better part of the year emerging from the ashes, Phillips’ advice for others is to be ready.
“Prepare for the worst,” he said, “even if it’s an exercise that you think will never happen.”
Yet even the best laid plans go awry. Adaptation is critical. “Chaos is normal, but you’ve got to try and manage it the best you can,” said Pedersen. He said water agency personnel are first responders, too, moving behind firefighters and shutting off residential water service to maintain pressure in the system even before the flames are completely extinguished.
Phillips said agencies across California should practice putting together a FEMA claim to learn how it’s done and what the federal agency will approve. Just as important is reviewing insurance policies to ensure adequate coverage exists.
“Look at the system from a natural disaster perspective and say, ‘What will break and what will be an item that will either be covered or not covered and are we OK with that?’” he said.
Business interruption insurance, which the Paradise district could have used more of, “is one gap that FEMA doesn’t cover,” Phillips said.
Pedersen said his district has looked back at its response to the Woolsey Fire and recognized some things it did not do well besides failing to evacuate to a remote emergency operations center. Staff working in haste sometimes brushed aside worker safety rules, which later drew notice from Cal/OSHA. The district failed to update some of its pump station equipment to be compatible with newer emergency power connections, necessitating on-the-fly rewiring to connect equipment. And the district should have done more to load test emergency generators, which required repairs during the fire.
Given the advent now of public safety power shutoffs, Pedersen said, ensuring plenty of available power is especially critical – as is the ability to test the equipment routinely without running afoul of air quality rules. Las Virgenes has joined other water agencies in seeking legislative changes that would give them more flexibility to properly load test emergency generators.
“The bottom line is that as water agencies, we need to invest in backup power like we never have before,” he said. “We can’t leave ourselves vulnerable to these widespread power outages. Whether we like it or not, we’ve got the threat of these wildfires and these events.”
Pedersen also advised water agencies to make lots of friends ahead of time — with nearby water agencies, cities and other local governments — to promote a mutual aid network that can help when fire strikes.
For all water agencies, especially those on the wildland-urban interface, one key lesson is clear: When fire strikes, speed and preparedness are crucial.
“Activate early, apologize later,” Pedersen advised. “Try to anticipate what you need because if you wait until you need it, it’s going to be too late.”
Lessons from the flames: advice from water managers who have lived through disaster
California water managers who have lived through a devastating wildfire and its aftermath have shared key lessons from their experiences.
What follows are suggestions and advice offered by water managers in interviews and during public presentations for others to keep in mind before, during and after a major wildfire.
BEFORE
Think about what can happen and how to respond. How vulnerable are your pipes?
Know what things FEMA will reimburse ahead of time
Know what your insurance covers, including business interruption insurance
Have emergency reserve funds available to pay immediate bills
Stockpile pipes and other materials needed for emergency repairs to critical assets
Make sure you have adequate backup power available and load test it periodically
DURING
Establish an off-site command center for water agency operations and be prepared to use it
Send someone to the fire incident command center to aid coordination
Request mutual aid before you need it
Document expenses from the start for FEMA reimbursement
Issue public notices and updates without delay
Two-way radios, rather than cellphones, are essential for communicating with emergency responders
AFTER
Get as much recovery work done under an emergency order as you can to streamline repairs
Notify ALL permitting agencies prior to work
Sample water in pipelines for contamination and prepare to flush the lines as needed
REMEMBER: Emergency response is a sprint; disaster recovery is a marathon
The east-side outlet of the Twin Lakes tunnel, which is operated by the Twin Lakes Reservoir and Canal Co., a member of the Front Range Water Council. The FRWC recently declined to meet with members of a Colorado Basin Roundtable group about demand management. Photo by Brent Gardner-Smith/Aspen Journalism
GLENWOOD SPRINGS — The state of Colorado’s investigation into the feasibility of a demand-management program has spawned the spinoff of several additional groups to study the issue, underscoring persistent tensions between the Western Slope and Front Range water managers.
In June, the Colorado Water Conservation Board named 74 people — most of them experts in their fields — to nine workgroups charged with helping the state study whether a water-use reduction plan is right for Colorado. Now, some roundtables and conservation districts are forming their own grassroots stakeholder groups to study demand management outside of the state’s formal process.
One of those is the Colorado River Basin Roundtable. The stakeholder group, chaired by Kirsten Kurath, who is general counsel for the Grand Valley Water Users Association, invited Front Range water providers to an informal meeting on Monday to discuss demand management and address some assumptions about the contentious topic.
Although representatives from Northern Water and Aurora Water initially accepted the invitation, a subsequent letter from the Front Range Water Council made it clear that Front Range water interests were circling the wagons and closing ranks. The FRWC is an ad-hoc group made up of representatives from Front Range urban water providers.
In a letter signed by FRWC chair and Denver Water CEO James Lochhead, the group declined Kurath’s invitation to the meeting.
“We feel it is best at this point not to have ‘official’ side meetings regarding demand management and what a demand management process/program may look like because, particularly with press present, such conversations may lead to confusion and may undermine the state process,” the letter reads.
“It seemed like a great opportunity as part of our workgroup to invite folks from the Front Range Water Council and chat with them about what we are thinking about demand management,” Kurath said. “We do need to work at relationship-building between these historically adverse parties.”
This field is irrigated with water from the Roaring Fork River, under a senior water right. Some on the Western Slope worry that water savings from a water-use-reduction plan known as demand management could fall disproportionately to the agriculture sector. By Brent Gardner-Smith/Aspen Journalism
Contentious topic
So, why is demand management a touchy subject that highlights tensions between Colorado’s West Slope and Front Range? It may be because some in Western Slope agriculture worry that Front Range water providers, backed by a reliable pot of money from their rate-paying customers, can simply pay ranchers to fallow fields without having to reduce their own water consumption. Some Western Slope agricultural water users have voiced concerns about how to create a demand-management program that reduces water use equitably across all sectors, not just agriculture.
On top of that, some fear that if fields are no longer producing crops, a cascade of unintended consequences for the local economy could be the result. The Colorado River Water Conservation District and the Southwestern Water Conservation District are studying the secondary economic impacts of demand management.
“What are the economic impacts should someone decide not to grow a crop?” said Frank Kugel, executive director of the Durango-based Southwestern Water Conservation District. “What about the tractor-supply store, the feed stores, the restaurants and the workers that work on those farms?”
Adding to the controversial nature of demand management is Colorado’s social and cultural backdrop. At the heart of a demand-management program is a reduction in water use on a temporary, voluntary and compensated basis in an effort to send as much as 500,000 acre-feet of water downstream to Lake Powell to bolster water levels in the giant reservoir and, indirectly, to meet Colorado River Compact obligations. Under such a program, ranchers and farmers could get paid to leave more water in the river.
But Andy Mueller, general manager of the CRWCD, said the concept of intentionally saving water goes against the age-old Western water adage of “Use it or lose it.” Some irrigators believe their water right, which is seen as a property right, could be considered abandoned if they don’t use their entire share of the water all the time, although it is rare in Colorado for this aspect of the law to be enforced by the state.
“We are asking people to change 150 years of cultural, family, political traditions,” Mueller said. “What we need to do in the water-policy world is help provide people with security and confidence they are not unintentionally damaging themselves for the future and that they are protected and have economic certainty.”
To this end, the river district also is forming a demand-management stakeholder group of its own. Mueller said the goal is to convene a group of roughly 30 water users to figure out how their interests would be protected if a demand-management plan is implemented.
“It’s a really critical thing for our actual water users to be driving the train because they know how their farms work,” Mueller said. “If you get ideas from them, they are much more likely to work in the long run.”
The Government Highline Canal, near Grand Junction, delivers water from the Colorado River, and is managed by the Grand Valley Water Users Association. Representatives from the Grand Valley Water Users Association invited members of the Front Range Water Council to discuss demand management, but the FRWC declined. By Brent Gardner-Smith/Aspen Journalism
Water from ag?
Although some might assume that the easiest way to save a large amount of water in a demand-management program is to take it from Western Slope agriculture, Front Range water providers say that isn’t the case. Lochhead said that Denver Water would participate in a demand-management program along with everyone else using “wet water,” not just by throwing money at the problem.
Brad Wind, general manager of Northern Water, agreed that water savings solely from Western Slope agriculture isn’t the solution.
“I get the impression from some West Slope entities … that they think the whole burden of demand management is going to come on the backs of the West Slope,” he said, “and honestly, I don’t think anybody on the Front Range Water Council is saying that.”
These were some of the issues Kurath was hoping to clear up in a meeting with her stakeholder group and Front Range water providers.
“We just wanted to explore that with folks,” she said. “It was a real disappointment to me to have them decide they didn’t want to participate.”
Editor’s note: Aspen Journalism collaborates with The Aspen Times and other Swift Communications newspapers on coverage of rivers and water. This story ran in the Oct. 30 edition of the Times.
As demand and prices for Colorado water rise, state lawmakers are concerned that Wall Street investment firms and even local finance groups may seek to circumvent state laws designed to prevent water profiteering.
Last month, the Colorado Legislature’s Interim Water Resources Review Committee initially approved a bill authorizing a study to determine whether the state’s anti-speculation laws, already considered among the strongest in the West, need to be further strengthened.
“The reason I drafted it is because I’m hearing stories from the West Slope and the San Luis Valley of outside groups coming in and buying water rights. While we’re not entirely sure if this is speculation, some of these companies are more like financial and hedge fund institutions instead of agricultural interests. That seems to have the color of water speculation,” said Sen. Kerry Donovan, a Democrat who represents several West Slope counties and who is chair of the interim committee. (Editor’s note: Sen. Donovan sits on the board of Water Education Colorado, which sponsors Fresh Water News.)
Under Colorado law, water is considered a public resource, but the legal right to take it and use it toward some beneficial purpose must be approved in water court. Once obtained, water rights are considered a private property right, one that can be bought and sold as long as water courts approve the transaction.
Water has always been a scarce resource in Colorado and in the 1800s, as miners and farmers were moving in, the courts developed a system so that no one could hoard water and profit from its sale. To combat the problem, they required that water rights be granted only to those who could put them to beneficial use, whether in farm fields or mines, or in people’s homes and businesses.
The anti-speculation laws have been challenged and upheld many times in water court, leading several water experts to question the need to amend them.
Dave Taussig, a Denver water attorney, said he was surprised to see lawmakers move in this direction.
“This is one of the few areas of Colorado [water] law that is pretty well defined and established,” Taussig said. “I don’t see the need for this.”
For many transactions, as long as the water is being put to use, the deal is not considered speculative.
On the West Slope, for instance, New York City-based Water Asset Management has purchased ranches with valuable, senior water rights. Right now, the company continues to operate the farms and the water is still being used as it had been before the purchase, so it is not considered speculative. That’s because, under existing law, there is nothing to prevent someone from buying water rights with an eye toward a future sale, where the interim use is just a placeholder.
Water Asset Management could not be reached for comment. But its website spells out a clear investment strategy that includes acquiring Western farm water and holding onto it until it appreciates in value, at which point it could be leased or sold for a profit.
Closer to home, Denver-based Renewable Water Resources has assembled an investment group which intends to purchase farm water in the San Luis Valley and pipe it to the Front Range.
Sean Tonner, a principal in RWR, said the proposal isn’t a buy-low, sell-high proposition because his company is offering $2,500 to $2,800 an acre-foot for the farm water, which normally sells locally for much less, around $65 to $200 an acre-foot, according to San Luis Valley water officials.
Tonner declined to provide a sales price, but Front Range developers routinely pay $20,000 an acre-foot and more for water.
RWR has not yet identified an end-user for the project, but has committed to do so before it seeks approval from state water court.
“Colorado has great anti-speculation laws. If there is a way to make them stronger, I’m all for it,” Tonner said. “But I would disagree with the assertion that what we’re doing is buy-low, sell-high.”
Still, lawmakers are concerned. Sen. Don Coram, R-Montrose, is also on the interim water committee and said the state needs to be vigilant about how its agricultural water rights are being bought and sold.
“Yes we do have strong anti-speculation laws,” Coram said, “but hedge funds also have very good attorneys. There are ways to work around [the laws].”
According to the initial bill draft, the Colorado Department of Natural Resources would form a work group next year to examine what the state can do to ensure its market-based water management system isn’t manipulated by moneyed interests. The bill directs the group to report back to lawmakers in August of 2021.
The committee will vote Oct. 24 on whether the bill should advance further. If approved, it will be introduced during the regular session that opens Jan. 8, 2020.
Donovan is hopeful the process will uncover new tools, even beyond the anti-speculation laws, to help the state prevent profiteering.
“Water speculation is something we need to ensure we have a firm grip on as a state. I expect there will be a lot of conversations in upcoming years about how we make sure that water isn’t exploited and doesn’t become a way for people to make a quick dollar,” Donovan said.
Jerd Smith is editor of Fresh Water News. She can be reached at 720-398-6474, via email at jerd@wateredco.org or @jerd_smith.
This story originally appeared on Fresh Water News, an independent, non-partisan news initiative of Water Education Colorado. WEco is funded by multiple donors. Its editorial policy and donor list can be viewed at wateredco.org.
We’ve heard about the deteriorating status of American infrastructure and most imagine crumbling bridges and potholed roads. But there’s another looming infrastructure crisis that’s getting little to no attention—and it will eventually impact everyone: America’s reservoirs are filling up with sediment. Their storage capacity peaked in the 1980s and it’s been going downhill ever since—sometimes with disastrous consequences.
Lewis and Clark Lake is the reservoir created by Gavins Point Dam on the Missouri River. It’s 30 percent full of sediment and could be half full by 2045. | Photo (taken in 2011): Missouri Sedimentation Action Coalition
Niobrara, Neb.— Ruth Janak regularly walks along the Missouri River’s edge in the small town of Niobrara, Nebraska, where she lives. She’ll pan the landscape—hoping to find any remnant of the inventory from the service station she ran with her husband, Victor. Remarkably, she finds things—a hydraulic hose, a belt—but there’s a lot that’s missing—workbenches, tires, cabinets, a pop cooler. It’s gone. “Where are they?” she asks, knowing there’s no answer.
When the “bomb cyclone” weather event ravaged areas from Colorado to Nebraska and the Dakotas last spring, the Spencer Dam on the Niobrara River failed, sending not only a wall of water, debris, and sand downstream but also huge chunks of ice as big as bulldozers. Like a battering ram the flow shoved everything into the river from propane tanks to cattle—and unfortunately for the Janaks—their business.
Standing in a new location higher up in town where they’ve recently moved, Ruth pulls out her phone and shows a video taken by an employee of the Nebraska Department of Transportation, which shows buildings helplessly surrendering to the ice-filled, brown, churning waves and untethering from their foundations, passing treetops as they float out of view.
“The craziest part about it,” she says, “is that our business wasn’t in the floodplain,” adding quickly, “but I’m sure that’s going to change.” It’s a sober recognition that the epic storm will not only likely shift the demarcation for flood hazards—but also be the boundary she’ll remember between her old life and new.
The Janaks weren’t in the floodplain—technically that is—but changes to Missouri River since the last century have blurred the lines of where the government says water officially goes and why. Huge amounts of sand and silt have been accumulating in the river—especially near where the Janak’s business sat at the confluence of the Niobrara and the Missouri Rivers. The more sediment piles up there, the higher the waters rise—something Ruth has witnessed firsthand. When she and Victor bought their business, the water wasn’t even close to them. With increasing siltation, she says, “It knocks at your back door all the time.”
Clear as mud
Sedimentation occurs when all the sand, silt, rocks, and soils that would naturally travel down rivers to the sea get trapped behind dams. Sediment itself is a good thing. It creates habitat, fertile farm fields, and forms deltas at the river’s mouth that are natural buffers against storms in places like Louisiana. But when dams were built along the Missouri River, that natural process came to an end and the troubles began.
Perhaps nowhere is sedimentation more evident than at the confluence of the Niobrara and Missouri Rivers, where the water snakes its way through lumps of grass-covered islands. The sand has piled up there ever since the completion of the Gavins Point Dam just downstream. When the sediment-laden river hits the deep standing water of its reservoir, called Lewis and Clark Lake, the water loses its energy and the load it’s carrying drops out.
Over time, the sediment mounds up to form a delta and the river is forced to go over, around, or even under it. That happens rain or shine, but during a major flood disaster, like the recent bomb cyclone, levels are pushed up proportionately, if not higher—a point the catastrophic flooding from the Spencer Dam failure made all too clear, says Nicholas Pinter, professor of earth and planetary sciences at the University of California, Davis. He says that sedimentation caused by Gavins Point Dam made the destruction of the Janak’s property more likely—“absolutely, unquestionably—and no honest person in the Corps or otherwise would say not.”
The “Corps” he’s referring to is the Army Corps of Engineers. They built Gavins Point Dam in 1955, but in the 1970s they had to move the town of Niobrara because sedimentation resulting from the dam’s reservoir was raising the water table, causing flooded basements and ruined crops.
Actually, the town of Niobrara had to be physically moved—twice. The first time was in 1881 when an ice jam on the Missouri flooded the village with nearly six feet of water. The townsfolk pulled its buildings by oxen and mule a mile-and-a-half to higher ground where they thought they would be safe. But that was before Gavins Point Dam was built.
No one disputes that the reservoir was responsible for the high groundwater in Niobrara in the 1970s. In fact, the engineers who built the dams in the 1940s and ’50s along the Missouri River knew sedimentation would be a consequence. But, says Pinter, Gavins Point Dam was “designed as almost every large dam on Earth, which is not to say that it was well designed or poorly designed, but it was well known at the time that it would not pass the sediment that it would need to, to avoid this problem.”
A sediment design life
The fact that the dams would not pass sediment—and that eventually sedimentation would make them inoperable—was not only fully acknowledged by the engineers who designed them, but they even had a name for it—the “Sediment Design Life.” As Tim Randle, Manager of the Sedimentation and River Hydraulics Group at the Bureau of Reclamation explains, “Virtually all reservoirs in the U.S. and much the world were designed with a sediment design life, meaning after so much time the reservoir’s not going to function very well, the outlet will be plugged.” For Reclamation and Army Corps dams, he says, that lifespan was somewhere around 100 years.
Since many large dams were built in the middle of the last century, they are now in the second half of their sediment design life. Some might fill in decades, others in hundreds—or even thousands of years. Which ones? That’s hard to know, says Randle. Most reservoirs—65 percent of Reclamation reservoirs—haven’t been surveyed for sedimentation since they were filled.
Randle says long before reservoirs completely fill there will start to be problems like dam outlets or hydropower intakes getting gummed up, as well as boat ramps or marinas getting buried—and as was the case in Niobrara—floods. There are over 90,000 dams on the federal inventory—so any notion of just letting the reservoirs fill up and store water elsewhere would be difficult—essentially all the good sites are taken.
The Pick-Sloan Plan…and the rest is history
But history might have taken a different course had Glenn Sloan prevailed. Before the dams were built the sediment-laden “Big Muddy” meandered restlessly from valley wall to valley wall and flooded occasionally. When the Lewis and Clark expedition explored the Missouri River in the early 1800s it was almost a mile wide with numerous sandbars that split the waterway into several braided channels.
But in 1943, three devastating floods put pressure on Congress to tame the river once and for all, and they called on the Army Corps of Engineers to produce a plan. Colonel Lewis A. Pick, then division engineer in the Corps’ Omaha, Nebraska, office, proposed five multipurpose dams on the mainstem of the Missouri River above Sioux City, Iowa.
Meanwhile, William G. Sloan, an engineer with the Bureau of Reclamation, called for over 85 new tributary dams and three mainstem dams. Tim Cowman with South Dakota Geological Survey suggests that by putting smaller dams on the tributaries, they would have captured small amounts of silt and sediment in numerous places, preventing it from reaching the Missouri—and perhaps avoiding the massive sedimentation problem happening today.
In the end, the plans were merged into the Pick-Sloan Plan, which Congress ratified in the Flood Control Act of 1944. The plan brought flood control, irrigation, and hydropower to the basin, but Native Americans, whose reservations bordered the river, were huge losers. The reservoirs flooded their best agricultural and grazing lands and displaced hundreds of families. Attorney Peter Capossela, writes in his article, “Impacts of the Army Corps of Engineers’ Pick- Sloan Program on the Indian Tribes of the Missouri River Basin”:
The trouble below
Meanwhile, the sediment delta of Lewis and Clark Lake grows. It extends, on average, 400 feet per year—and in huge weather events, storms can shove sand and silt nearly a mile into the lake. Cowman says this not only takes up precious storage space but also reduces the reservoir’s ability to handle floods.
But downstream of the dam, he says, there are problems, too. When water is released downriver, it’s clear, having left its trapped sediment in the reservoir. However, the released water actually seeks out sediment, something called “hungry water.” That water satisfies its craving by scouring the riverbed below and eroding its banks. In fact, Cowman says, the channel below Gavins Point has been eroded by ten feet, and that’s recently forced the city of Yankton, South Dakota, to lower its water intake pipes because they’ve become higher than the river’s surface. For comparison, according to the organization International Rivers, “Within nine years of the closure of Hoover Dam, hungry water had washed away more than 110 million cubic meters of material from the first 145 kilometers of riverbed below the dam, lowering it in places by more than four meters.“
Also because the dam controls the river flows—never getting too high, never too low—the natural process that used to build sandbars, stopped. Normally during flood events, Cowman says, high water builds up what are essentially sand dunes on the bottom of the riverbed. Once the water drops to normal levels, those sand dunes become sandbars sticking out of the water. Unless there are occasional high flows, new sandbars won’t form and the ones that are there will erode away. In fact the Army Corps of Engineers was required, at some expense, to build new sandbars because two endangered birds—the piping plover (Charadrius melodus) and interior least tern (Sterna antillarum athalassos)—that nest just below Gavins Point had lost their habitat.
Solutions
Because of these problems both above and below Gavins Point Dam, a group called the Missouri Sedimentation Action Coalition (MSAC) was formed to educate the public about the issue and find solutions before things get even worse. The group reflects a range of interests including individuals, nonprofits, cities, and tribes who are already feeling the effects of sedimentation in Lewis and Clark Lake, which is 30 percent full of sediment and expected to reach 50 percent by the year 2045 if nothing is done.
So what can be done? There are three general strategies to managing sediment in reservoirs. One is to look at the upstream watershed and reduce erosion and runoff to keep debris from entering the river. Tactics include bank stabilization efforts and buffer strips, to better farming practices and keeping livestock from grazing too close to a waterway.
Another set of solutions is to prevent sediment from depositing in the reservoir by routing the silt and sand through or around the dam. This can be achieved with tunnels or channels that bypass the sediment around the reservoir, or with sluicing methods that move sediment through the dam before it has a chance to deposit.
One mechanism that MSAC is evaluating is to create a sort of speed bump in the river channel with something called “sediment collectors,” which entails putting a metal trough (or a series of troughs) across the riverbed. The collectors would passively create a difference in the speed of the current as it passes over it and a substantial amount of sediment would drop into the trough, where it could then be augured out and up onto land. However, what to do with all that stockpiled sediment would be an issue.
The third approach is to remove sediment that has already been deposited in the reservoir either by dredging or flushing. The issue of what to do with all the material is also a question, particularly if contamination is suspected.
SOS
Any of the sediment management solutions will be costly, take time to implement, and have engineering challenges. Tim Randle and his colleagues are part of a group called the Subcommittee on Sedimentation, which ironically has the acronym “SOS.” In 2014 they put out a resolution [Full text] calling on all federal agencies that own or operate dams to come up with sustainable management plans for reservoirs by 2030 and that the plans “should include either the implementation of sustainable sediment-management practices or eventual retirement of the reservoir.” That was five years ago and not much has happened. [See June 2019 National Reservoir Sedimentation and Sustainability Team white paper.]
Sedimentation is not just a problem for Niobrara, or even just the Missouri River. It threatens nearly every major reservoir in the U.S. And although what happened to the Janaks is in the extreme, it could be a harbinger of what’s to come if the issue is not addressed.
MSAC is adamant that doing nothing is not an option. Sandy Stockholm, executive director of the organization, says they are working with their stakeholders, the Army Corps, and several experts from academia with the goal to finalize the scope of a sedimentation management plan by the end of the year. The resulting plan—if they can fund and implement it—will not only slow the damage but also become a model for reservoirs across the country, which, whether dam owners know it or not, are on track to have the same fate. ?
This story originally appeared on H2ORadio.org and is republished here by permission.
CARBONDALE — Proposition DD’s supporters — including environmental organizations, agriculture interests, conservation districts and Aspen Skiing Co. — say the measure will be used to close a $3 billion state funding gap in implementing the Colorado Water Plan. The frequently cited figure of a $100 million annual shortfall for 30 years is written in the water plan itself.
But where did the authors of the water plan get this number and what kinds of projects and programs might the measure fund? According to the legislation, money raised from Prop DD could go toward an agricultural water-use reduction program that doesn’t yet exist.
In the following explainer, Aspen Journalism unpacks the ballot question, which will be posed to voters Nov. 5, and what the tax revenue may actually end up funding.
The Colorado River in fall light. Proposition DD allows for tax revenue raised through sports betting to fund a future demand management program, which would pay agricultural water users to leave more water in the river. Photo by Brent Gardner-Smith/Aspen Journalism
How will Proposition DD work?
Gov. Jared Polis signed House Bill 19-1327 into law in May. But voters must still pass Proposition DD for it to take effect.
According to the 2019 State Ballot Information Booklet, Proposition DD would authorize the state to collect a 10% tax up to $29 million a year (but the projected average amount is $16 million) from casinos’ sports-betting proceeds. The Colorado Division of Gaming and the Colorado Limited Gaming Control Commission will be responsible for regulating sports betting operations.
Of the money raised, a projected $130,000 would go to gambling addiction services and $960,000 would go into a “hold harmless” fund. Entities that receive tax revenue from traditional gambling such as horse racing could apply for funding from the hold harmless fund if they can prove they lost money due to the legalization of sports betting.
The remaining projected average annual $14.9 million (but up to $27.2 million) in tax revenue would go to funding projects that align with the goals outlined in the water plan, as well as toward meeting interstate obligations such as the Colorado River Compact. Under the compact, the Upper Basin states, which include Colorado, must deliver 7.5 million acre-feet of water annually to Lake Powell.
If voters pass Proposition DD, it will take effect May 1.
Agricultural machinery in the Grand Valley, near Grand Junction. Photo by Brent Gardner-Smith/Aspen Journalism
What does the legislation say?
The legislation creates a special Water Plan Implementation Cash Fund, which would be administered by the Colorado Water Conservation Board, a statewide agency charged with managing Colorado’s water supply. The money could be spent on water-plan grants, but may also be spent “to ensure compliance with interstate water allocation compacts … including … compensation to water users for temporary and voluntary reductions in consumptive use.”
A hayfield near Grand Junction, irrigated with water from the Colorado River. Under demand management pilot programs, the state could pay irrigators to fallow fields in an effort to leave more water in the river. Photo by Brent Gardner-Smith/Aspen Journalism
What is demand management?
At the heart of a demand-management program is a reduction in water use by agriculture on a voluntary, temporary and compensated basis, all in an effort to send up to 500,000 acre-feet of water downstream to bolster water levels in Lake Powell to meet potential obligations under the Colorado River Compact. Under pilot programs the state could pay ranchers and farmers to leave more water in the river.
The CWCB has formed nine workgroups, each tasked with helping to identify and solve issues related to demand management. Western Slope agricultural water users have expressed concern about how a demand-management program would be implemented fairly.
District 5 State Sen. Kerry Donovan, whose district includes Aspen and who was a sponsor of the bill, acknowledged that as Colorado gets a handle on demand management, money from Proposition DD could go toward funding a future program.
“Most water experts would say demand management in some form will be part of addressing the Colorado River Compact obligations,” Donovan said. “Maybe in five years, maybe in the next generation, but somewhere in the long-term planning strategy of the Colorado River, demand management will be part of the puzzle.”
District 5 State Sen. Kerry Donovan, left, speaks on a panel with other lawmakers at the Colorado Water Congress legislative session in Steamboat Springs in August. Donovan asked water managers for their support of Proposition DD, which would fund water projects grants and, potentially, a demand management program. Photo by Heather Sackett/Aspen Journalism
What is the Colorado Water Plan?
At the behest of then-Gov. John Hickenlooper, water managers from across Colorado collaboratively created the water plan, which was unveiled in 2015. The plan, which is more of a policy document, says Colorado faces a looming water “gap” across all sectors — municipal, industrial, agriculture, recreation and environment — because of the state’s growing population and increasing water demands.
The 567-page plan does not prescribe or endorse specific projects but instead sets Colorado’s water values, goals and measurable objectives, which are set out in a critical action plan. For example, the plan sets a measurable objective of storing an additional 400,000 acre-feet of water in reservoirs by 2050 and covering 80% of local rivers with stream-management plans by 2030, but it does not say how water managers should go about doing this.
The Colorado Water Conservation Board, after unveiling the Colorado Water Plan in Denver in November 2015. Revenue from Prop DD could go toward funding water plan grants. Photo: Colorado River District
What about water plan grants?
According to the legislation, revenue from Proposition DD will also go toward water-plan grants. Local water managers apply to the CWCB’s Water Plan Grant Program to fund projects that advance critical actions laid out in the water plan from the following categories: agricultural, engagement and innovation, environmental and recreation, water conservation and land-use planning, or water storage and supply.
Water-plan grants are a 50% matching grant, meaning that the local entities applying for the grant must match from their own coffers the amount they are requesting in state funds.
For fiscal year 2019-20, $10 million will be available for the Water Plan Grant Program. Funding from Proposition DD could add roughly $15 million a year to this grant program.
Many of the projects that the water-plan grants fund come from each of the nine basin roundtables’ Basin Implementation Plans. The BIPs identify how each basin’s water needs will be met through existing or new projects, policies and processes. But many of the local water projects included in the BIPs don’t specify how much funding is needed to implement them and many roundtables’ projects lists have only partial and inconsistent information.
For example, 14 of the 31 top projects outlined in the Colorado BIP have “TBD” in the Funding Needs column.
“In the Basin Implementation Plans, some of those projects are pretty rough and it was a best guess at the time with limited information,” said CWCB Deputy Director Lauren Ris.
Roundtables will soon embark on an update to their BIPs, with the goal of refining project details, including cost.
A view of the headgate on the Robinson Ditch and the boulder structure in the Roaring Fork River that maintains the grade of the river so water can reach the headgate. Pitkin County has received a water-plan grant to help repair the diversion structure and improve boating passage. Photo by Brent Gardner-Smith/Aspen Journalism
What is the funding gap?
According to the water plan, there is an estimated funding gap of $100 million per year over 30 years. These figures, according to Ris, came from data in the 2010 Statewide Water Supply Initiative. That technical analysis found that Colorado needed $20 billion worth of water projects to meet the water supply gap by 2050. Of that $20 billion, $17 billion is expected to be paid for by existing funding sources, including rate payers of water utilities and federal money.
The state is investigating options to fund the remaining $3 billion gap. Proposition DD is one of these options. But the $3 billion figure, based on decade-old data, is not precise.
“($100 million per year over 30 years) was an estimate,” Ris said. “I don’t think it was ever really intended to be an exact figure. It’s more to say, we know there’s going to be a big need and we will work to refine that estimate going forward … We are just trying to point out it’s an expensive endeavor going forward.”
Supporters of Proposition DD say they realize that the estimated $15 million raised per year is still a far cry from the estimated $100 million needed per year, instead calling the money a “down payment” on implementing the water plan.
The 2015 Colorado state water plan on the shelf of the CU law library in Boulder. The CWCB often presents updates on the progress it says it is making on implementing the plan. Photo by Brent Gardner-Smith/Aspen Journalism
Who is endorsing Proposition DD?
Proposition DD has received broad endorsement from environmental groups such as Conservation Colorado and American Rivers, agriculture organizations such as the Colorado Cattlemen’s Association and the Colorado Corn Growers Association, and several chambers of commerce.
Matt Rice of American Rivers said his organization is endorsing the measure because it wants to see some projects fully funded, including stream-management plans, urban water-conservation programs and modernization of agriculture irrigation infrastructure.
Rice said American Rivers “unabashedly and unequivocally” supports a demand-management program in Colorado, which Proposition DD could help fund.
“We deeply believe a demand-management program needs to be one of the tools that we have in our toolbox as we plan for water scarcity or prolonged drought because of climate change,” Rice said.
A river project, partially funded by the CWCB on the Arkansas River at Granite. The project was removing a river-wide diversion structure and replacing it with a new diversion structure that will allow unimpeded boating through Granite. Photo by Brent Gardner-Smith/Aspen Journalism
Who is opposed to Proposition DD?
Environmental group Save the Colorado and the political action committee Coloradans for Climate Justice oppose the measure. According to the Coloradans for Climate Justice Facebook page, the group believes fossil fuel companies should pay for the damage to water-supply systems caused by climate change. So far, the group has not filed any reports for contributions or expenditures.
The Colorado River in fall near Loma. Proposition DD could allocate tax revenue to a demand management program with the aim of leaving more water in the river. Photo by Brent Gardner-Smith/Aspen Journalism
Who is funding Proposition DD?
Despite broad support from many organizations, the political action committee Yes on Prop DD is funded primarily by the gambling industry. According to filings with the Secretary of State, as of Sept. 30, casinos and online sports betting organizations have spent nearly $1 million to support the measure. The Colorado Farm Bureau and the Environmental Defense Fund have contributed $10,000 each.
Editor’s note: Aspen Journalism is collaborating with The Aspen Times, Vail Daily, Summit Daily,Glenwood Springs Post-Independent and other Swift Communications newspapers on coverage of water and rivers. This story appeared in the Oct. 10, 2019 edition of the above papers or on their websites.
The Water Desk is excited to announce our first grants to support journalists and media outlets covering Western water issues and the Colorado River Basin.
Grantees
will delve into a wide range of issues throughout the region, including
biodiversity, pollution, groundwater, climate change, public lands, energy
development and tribal water rights. The journalists and outlets will use a
variety of media—newspapers, magazines, websites, television, radio—to explore
critical challenges facing the West’s water.
The recipients of The Water Desk’s
2019 standard grants (in alphabetical order):
The Water Desk’s standard grants award up to $10,000 to journalists and media outlets covering water issues involving the seven states of the Colorado River Basin—Arizona, California, Colorado, Nevada, New Mexico, Utah and Wyoming—as well as the borderlands of Northwest Mexico.
For the 12 standard grants, The Water
Desk has approved a total of $112,888 in funding for journalists.
In addition to the standard grants, The Water Desk has also approved 10 micro-grants, up to $1,000 each, to support travel expenses, multimedia content and professional development for water journalists.
Applications for the standard grants were reviewed and approved by a selection committee consisting of: Mitch Tobin, Director of The Water Desk; Tom Yulsman, Director of the Center for Environmental Journalism; Hillary Rosner, Scholar-in-Residence at the Center for Environmental Journalism; and Amanda Clark, a recent graduate of CU Boulder’s master’s program in journalism who worked for The Water Desk.
The Water Desk launched with support from the Walton Family Foundation. Our funders and the University of Colorado have no right of review and no influence on the journalism that is produced with these grants.
The Water Desk will be running a similar program for standard grants in 2020 and is still accepting applications for 2019 micro-grants. Details about the grantmaking program are on this page.
Varsity Lake, near The Water Desk’s office. Source: Casey A. Cass, University of Colorado
We will be producing and distributing original reporting, writing and multimedia on water issues while also serving as a hub for a network of water journalists.
This map shows the snowpack depth of Castle and Maroon valleys in spring 2019. The map was created with information from NASA’s Airborne Snow Observatory, which will help water managers make more accurate streamflow predictions. Source: Jeffrey Deems/ASO, National Snow and Ice Data Center
STEAMBOAT — As a changing climate renders streamflow predictions less accurate, water managers are turning to new technologies for a clearer picture of what’s happening in their basin’s snowpack.
The city of Aspen last spring became the latest water provider in western Colorado to use remote-sensing lasers from airplanes to map the snowpack in the surrounding watershed. On April 7 and June 10, planes equipped with LiDAR, which stands for light detection and ranging, flew over the mountains surrounding Castle and Maroon creeks, measuring the depth of the snow and how much water it contained.
The snow from Castle and Maroon valleys eventually becomes Aspen’s municipal water supply as it trickles downstream. Knowing how much snow is left and where that snow is located can help Aspen’s water managers better plan for spring runoff.
“The information (that the flights) were able to share with us shows us so much information about where the snow collects and some of the runoff patterns,” said Margaret Medellin, the manager of Aspen’s Utilities Portfolio. “It’s a more sophisticated way of looking at the water content in our snow.”
The flights were conducted by NASA’s Airborne Snow Observatory, or ASO, an initiative co-founded by Jeffrey Deems, a research scientist at the National Snow and Ice Data Center at the University of Colorado where the data will be archived and distributed. Last month in Steamboat Springs, Deems gave a presentation on mapping mountain snowpack at Colorado Water Congress.
“It removes a good portion of the uncertainty,” Deems said in a separate interview. “The better we can manage the system, the more everybody benefits and is less in conflict.”
Streamflow forecasts — used by irrigators, water managers, federal and state agencies, and other entities — are based primarily on data collected from snow-telemetry, or SNOTEL, sites. These automated, remote sensors collect weather and snowpack information in Colorado’s mountainous watersheds.
But SNOTEL sites provide just a snapshot, often not telling the whole story, which leads to inaccurate streamflow forecasts.
When conditions at SNOTEL sites start to creep outside of “normal” historic data due to climate-warming effects — early-spring melting, dust on snow, warm winter temperatures, fires and beetle-kill — the forecasting models can begin to lose accuracy. By mapping an entire watershed, ASO flights paint a more complete picture of the state of the snow.
“As the past becomes less of a good guide to the future, we really need to know in greater precision and accuracy what the current state of the snowpack is,” Deems said. “The folks who are making the decisions on how to manage our water infrastructure — whether that’s a ditch, a dam or a headgate — they need the best forecast possible so they can make the correct decision at the right time.”
This map shows the snowpack depth of the Maroon Bells in spring 2019. The map was created with information from NASA’s Airborne Snow Observatory, which will help water managers make more accurate streamflow predictions. Source: Jeffrey Deems/ASO, National Snow and Ice Data Center
Avalanches and hydrology
The LiDAR mapping also has the potential to help water managers better understand extreme weather events such as the historic avalanche activity this past March. One of Deem’s LiDAR mapping photos showed mountain tops that were scoured and devoid of snow, and valleys and avalanche paths that contained deep piles — the result of huge avalanches. An unanswered question is whether this snow melted out sooner (because it slid to a lower elevation) or later (because avalanche debris is denser and more compact).
“It may actually have delayed melt into the runoff season,” Deems said. “It’s not something we can say definitively what the effect is, but for the first time, the data set may actually allow us to test that and get a better handle on how hydrology and avalanches interact.”
Denver Water, which provides water to 1.4 million people on the Front Range, last spring used ASO flights to see how much snow remained in the mountains surrounding Dillion Reservoir, its largest storage pool. Data from a June 24 flight showed that although the SNOTEL sites at about 11,000 feet were melted out, there was still 114,000 acre-feet of water in the snowpack above. Denver Water increased its outflows from Dillon Reservoir to make room for the coming snowmelt.
“That ended up being about half our seasonal runoff,” said Nathan Elder, Denver Water’s manager of water supply. “(ASO) is the next thing in snow measurement. We haven’t had an advancement like this since the late ’70s, when they started putting in SNOTEL sites.”
A flight from NASA’s Airborne Snow Observatory gathers data about the snowpack above the reservoir on a June 24 flight. Information gathered from the flight helped Denver Water manage reservoir operations. Photo courtesy of Quantum Spatial
Costly technology
While innovative and useful, the technology is expensive. Over the past three years, the Colorado Water Conservation Board has spent $1.9 million on the Watershed Forecasting Partnership Program, with nearly $519,000 spent on ASO flights, according to Chris Arend, communications director for the Department of Natural Resources. The Castle and Maroon creek watersheds were mapped as an offshoot of a multiyear program in the Upper Gunnison River Basin.
A good approach, Deems said, would be for multiple local agencies to pitch in and share the cost, since each flight on the specially equipped plane can cost tens of thousands of dollars. For a small municipality such as Aspen, it’s just not worth it.
“It’s really hard to fund or justify funding big efforts like that,” Medellin said. “We are really excited about the data, but we have to think: Is this something we can really afford in this community? Right now, it seems like the benefit wouldn’t justify the costs.”
Editor’s note: Aspen Journalism collaborates with The Aspen Times and other Swift Communications newspapers on coverage of water and rivers. The Times published this story on Monday, Sept. 9, 2019.